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ABSTRACT

The Army High Performance Computing Research Center at the University of Minnesota
and the Mathematics and Computer Science Division at Argonne National Laboratory are
collaborating on the development of the software package MINPACK-2. As part of the
MINPACK-2 project we are developing a collection of significant optimization problems to
serve as test problems for the package. This report describes the problems in the preliminary

version of this collection.



1 Introduction

The Army High Performance Computing Research Center at the University of Minnesota
and the Mathematics and Computer Science Division at Argonne National Laboratory have
initiated a collaboration for the development of the software package MINPACK-2. As
part of the MINPACK-2 project, we are developing a collection of significant optimization
problems to serve as test problems for the package. This report describes some of the
problems in the preliminary version of this collection.

Optimization software has often been developed without any specific application in
mind. This generic approach has worked well in many cases, but as we seek the solution
of larger and more complex optimization problems on high-performance computers, the
development of optimization software should take into account specific optimization prob-
lems that arise in a wide range of applications. This observation was the motivation for
the main requirement for inclusion in this collection: each problem must come from a real
application and be representative of other commonly encountered problems. Problems in
the preliminary version of the collection come from such diverse fields as fluid dynamics,
medicine, combustion, nondestructive testing, chemical kinetics, lubrication, mathematics,
and superconductivity.

Our interest in high-performance computers was the reason for the second requirement
for inclusion in this collection: each application selected must lead to a large-scale opti-
mization problem. Many of the problems in the preliminary version of the collection are
finite dimensional approximations to problems that are naturally expressed in an infinite
dimensional setting. Thus, the solution of these problems usually requires the solution of
an optimization problem with a large number of variables.

We have also included in this collection small dimensional application problems with
interesting features. In particular, we have included difficult problems that are of especial
use in testing the robustness of an optimization algorithm. Although such problems may
not be large-scale with respect to problem dimension, they can be computationally intensive
and difficult to parallelize.

The optimization problems in this collection are divided into three broad categories:
systems of nonlinear equations, nonlinear least squares, and general minimization problems.
Most of the problems in the preliminary version of the collection either are unconstrained
or have only upper and lower bounds on the variables. We are also interested in large-scale
optimization problems with more general constraints, but our initial efforts have focused
on bound constrained problems, in view of our current work in developing software to solve
these problems.

The effort needed to develop a large-scale problem for this collection can be consid-
erable. Inclusion of a problem in the collection requires code for the evaluation of the

functions associated with the application, and verification that the code actually represents



the specified application. OQur experience in developing these problems has shown that the
verification process is important, because in several cases this process has unveiled errors in
the description of the application. We have tried to minimize the effort needed to include
a problem in this collection by concentrating on generic applications that can be described
(at least superficially) in two pages.

We also emphasize that we are developing code for the evaluation of the functions and
the associated derivatives in Fortran 77 to enhance portability. This is an important part of
our effort. There are several collections of interesting optimization problems, but in many
cases software for these problems is either not available or is available in a restricted format.

The primary purpose of this collection is to provide difficult test cases for MINPACK-2.

We are interested in examining the following issues:
How robust is the software with respect to poor initial approximations?
How does the software perform on badly scaled problems?
How robust is the code with respect to noise in the user-supplied software?
How does the software perform on large-scale problems?
How does the software perform on diverse vector and parallel architectures?

A complete discussion of these issues is not in the scope of this paper, but we mention
that with these problems it is entirely appropriate to use computing time as a measure
of efficiency: the computational expense (as measured by the number of floating-point
operations) of evaluating the functions in this collection is relatively small, roughly the
same order as the number of variables in the problem. For optimization software designed
for cases in which the expense of the user-supplied software is dominant, these same test
problems can be used to evaluate the software by using the number of calls to the user-
supplied software as a measure of efficiency.

In the remainder of this paper we describe the problems in this collection. We have
not attempted to provide a detailed description of the applications. The emphasis of this
paper is on the mathematical formulation of the application as an optimization problem.
We provide background information on the application; details that are not needed to
understand the formulation of the application have been omitted. For example, we do not
usually specify the standard starting point x, in the optimization problem. Our intention

is to provide these details at a later date.



2 Systems of Nonlinear Equations

The solution to a system of nonlinear equations specified by a mapping f: R — R" is a
vector & € R™ such that f(z) = 0. Algorithms for systems of nonlinear equations usually

approach this problem by seeking a local minimizer to the problem
ming[|f(2)]] s 21 < @ < 2u},

where 2; and z,, are bounds on the solution z, and ||-|| is some norm on R". Most algorithms
use the [ norm. Interestingly enough, codes for systems of nonlinear equations do not tend

to have provisions for handling bounds (or more general constraints) on the variables.

2.1 Flow in a Channel

The problem of fluid injection through one side of a long vertical channel leads to the

boundary value problem

uw(0)=4'(0)=0, u(l)=1, «'(1)=0,

where u is the potential function, u’ is the tangential velocity of the fluid, and R is the
Reynolds number. This problem is interesting because it is easy to solve for small Reynolds
numbers but becomes increasingly difficult to solve as R increases.

This problem was formulated by Huang [12]. In our formulation we have followed Ascher,
Mattheij, and Russell [2, p. 7].

We solve this nonlinear boundary value problem by a k-stage collocation method. Con-

sider the general boundary value problem
(1) = F(tu(t), (L), -, u™ (1),  te(a,b),
with m total boundary conditions given at t = @ and ¢t = b, and let
a=1 <ty < - <ty <tpy41 =20

be a partitioning of [a,b], with h; = t;41 — t;. A k-stage collocation method is defined in
terms of k£ points

0<pr <pg <o <pp <1,

We choose the collocation points p; as the roots of the Legendre polynomial of order k£ > m.
This choice guarantees that superconvergence occurs at the mesh points ¢;. The k-stage
collocation method approximates the solution to the boundary value problem by a piecewise

polynomial w,, where u, is a polynomial of order m + k in each subinterval [t;,%;41]. Thus,



u, is defined in terms of no(m + k) parameters. We specify these parameters by requiring
that u, € C™ '[a,b], that u, satisfy the m given boundary conditions, and that u, satisfy
the differential equation at the collocation points

&ij =L+ hipj, 1<i<ng, 1<j5<k.

The piecewise polynomial approximation u, in the interval [¢;, ;1] is of the form

Z

=1 ! i=1

where we choose the basis representation (Ascher, Mattheij, and Russell [2, pp. 247-249])

t—t .
vzy ‘|‘hmz¢] wl]v 1 <7< no,

Z

tm-l—j—l
()= ———- 1< <k,
¢]() (m_l_]_l)'v >7 >
A simple computation shows that in this representation
v =ud (), 1<i<ng, 1<j<m,
and that
wi; = b Y (1), 1<i<ng, 1<j<k.

Thus, bounds on a derivative of u, at ¢; can be specified by bounding v;; or w;;.
We guarantee that u, € C™ [a,b] by enforcing continuity at the interior grid points.

The continuity equations are thus given by

i) = a7, 1<l <m, 1<i<mo.

ks ks

The collocation equations are then

M (&) = F(&ioun(€), we(Ei) o oul™ (&), 1< <k, 1<i< g

These equations, together with the m boundary conditions, lead to a system of no(m + k)
equations in the ng(m + k) unknowns v;; and w;;.

We choose £ = 4 and ng = 40 in our numerical results. This choice leads to a system of
nonlinear equations with 320 variables. A plot of the computed tangential velocity u’ for
several values of R appears in Figure 2.1; similar results were obtained by Ascher [1] with
k = 5. Note, in particular, the steep gradient near t = 0 as R increases.

The three plots in Figure 2.1 were generated by solving a sequence of five problems with
Ro=0,R =10% Ry = 103, Ry = %104, and R4 = 10*. The problem with Ry = 0 is linear;
its solution is used as the initial approximation to the problem for R;. The continuation
process continues in this manner, with the initial approximation to the problem for R;i4
being the solution to the problem for R;. The whole continuation process requires 26
function evaluations. An interesting observation is that with the continuation process we
were able to obtain the solution for R = 10%, but this solution was not obtainable if we

started from the solution for B = 0.
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Figure 2.1: Tangential velocity u’ for R = 0,102, 10* (solid, dashed, dotted)

2.2  Swirling Flow

The steady flow of a viscous, incompressible, axisymmetric fluid between two rotating,

infinite coaxial disks, located at t = 0 and ¢t = 1, yields the boundary value problem

i

ef  +fM+a9'=0, "+ fg+ fg=0, 0<t<1,

JO)=f(0)=f1)=f(1)=0, ¢(0)=%Q, g(1)=

where f’ is radial velocity, g is angular velocity (€ and € are the angular velocities of the
infinite disks), and 0 < € < 1 is a viscosity parameter. This problem is interesting since it
is easy to solve for € close to 1 but becomes increasingly difficult to solve as € decreases. In
our formulation we have followed Parter [24]. (We note that there is a typographical error
in the formulation of Ascher, Mattheij, and Russell [2, p. 23]; in this reference the first
equation is ef " 4+ " + ¢’ = 0.)

The swirling flow problem is described by a (coupled) system of boundary value prob-
lems. Systems of this type can be solved by a natural extension of the k-stage collocation
method discussed above. A k-stage collocation method approximates the solution to a sys-
tem of p boundary value problems by a vector-valued function wu, : [a,b] — RP, where the
Jj-th component of u, is a polynomial of order m; 4k in each subinterval [t;, {;41], and m; is
the degree of the j-th boundary value problem. Thus u, is defined in terms of ng(pk + mg)
parameters, where mg is the sum of all the degrees. In many cases all the boundary value
problems have the same degree (for example, in initial value problems), and then wu, is

defined in terms of nop(k 4+ m) parameters, where m is the common degree.
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Figure 2.2: Radial velocity f’ for ¢ = 107,1072,107* (solid, dashed, dotted)

The parameters that define u, are determined by the continuity and collocation equa-
tions for each boundary value problem, together with the mg boundary conditions. If all

the boundary value problem have the same degree, the continuity equations are

i) = a7, 1<l <m, 1<i<mo.

ks ks

Note that in this case these are vector equations. Similarly, the collocation equations are

ul™ (&) = F(&ijoun(&iy)o (&), - ul" (&), 1<j<k, 1<i<ng.

If the boundary value problems have different degrees (as in the swirling flow problem),
then these equations have to be modified in an obvious manner since m depends on the
component of I,

For the swirling flow problem, p = 2 and mg = 6. For our numerical results, we choose
k =4 and ng = 40. This leads to a system of nonlinear equations with 560 variables. The
plots of the computed radial velocity f’ and the computed angular velocity ¢ appear in
Figures 2.2 and 2.3, respectively. In these plots, Qg = —1 and €4 = 1. For these values of
Qo and 24, McLeod and Parter [16] have shown that there is a solution to the swirling flow
problem such that the functions f and ¢ are odd functions about ¢t = %, the function ¢ is
strictly monotone on (0, 3), and there is a t; in (0, %) with f’(¢) > 0 on (0,#) and f/(t) < 0
on (4, %) These results are confirmed by the plots.

Continuation was used to solve these problems with e = 1071, ¢, = 1073, and 3 = 10™%.
The initial approximation to the problem with ¢; = 10~ was the solution of the boundary

value problem with ¢ = oco. The continuation process required 24 function evaluations.
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Figure 2.3: Angular velocity ¢ for e = 1071,1072,107* (solid, dashed, dotted)

2.3 The Human Heart Dipole

The human heart dipole problem arises in the experimental electrolytic determination of

the resultant dipole moment in the human heart. The problem is of the form

=21+ 22 — Opy

= a3+ x4 — Omy

= T581 + TeTy — T7T3 — LTy — 04

= 781 + ¥ + 523 + o4 — OB

= xl(wg — x%) — 2zaxswy + xg(acg — 9652;) — 224288 — OC
2

= z3(xf — x%) + 2z 2527 + x4(acg — $52;) + 2z926%8 — OD

= $1$5($§ — 336%) + zzx7(af — 3x§) + xQxG(xg — 3$52;) + x4x8(9€§ — 336%) — OE

I RN | V)

= $3$5($§ — 336%) — zyar(af — 3x§) + x4x6(9€g — 3$52;) — $2$8($§ — 336%) — OF

with data 0.0, 0my,04,08,00,0p,0E,0p. In this problem n = 8.

This problem was formulated by Nelson and Hodgkin [20]. In our formulation we have
followed Dennis, Gay, and Vu [6]. They also propose a six-variable version of this problem,
obtained by using the first two equations to eliminate two of the first four variables. We
have not implemented this reduced problem.

There are five versions of the eight-variable problem depending on the data and the
starting point. The last three versions can be difficult to solve, even from the standard

starting point.



An interesting aspect of this problem is that the system is unchanged if the variables

are permuted according to the
(1,2,3,4,5,6,7,8) — (2,1,4,3,6,5,8,7)

permutation. This implies that solutions appear in pairs. In all of these problems, we have
only found one pair of solutions. If a unique solution is desired, the bound z; < 0 can be
imposed. There are no natural bounds associated with this problem, but the components
of the solution lie in the interval [—20,20].

2.4 Combustion of Propane

This chemical equilibrium problem describes the combustion of propane in air. Each un-
known represents the number of moles of a given product formed for each mole of propane;

ten products are considered in this reaction. The problem is of the form

fi(e) =21+ a4 -3

fol2) = 221 +@g +wg + 27 + 25 + 29 + 2210 — R
fa(x) =2w9 + 225+ 26 + 27 — 8

fa(z) = 223 + 29 — 4R

f5(x) = Ksagxy — 2125

fel(z) = [(6$;/2$A11/2 — $}/2$6 L i

1/2
fr(z) = I(7$}/2$%/2 — x}l/zaw (i)

fs(z) = Kgay — wqug (i)

T11

/2
f9($) = ](9$1$:15/2 — X4Z9 (i)

T11

f10($) = ](10$% — $Z$10 (—p )
T11
fin(z) =211 — 2}21 Ly

with data Ks,..., Kqg, and parameters p and R. The parameter p is the pressure in at-
mospheres and R expresses the relative amounts of air and fuel. In this problem n = 11,
p = 40, and R = 10. In our formulation of this problem we have followed Meintjes and
Morgan [17].

This problem may be difficult to solve because of the presence of square roots in the

function components and the possibility of generating an iterate with a negative component.



There are no difficulties in solving this problem from the standard starting point z, but
an unconstrained algorithm is likely to generate an iterate with a negative component from

the starting point 10z,. The bounds z; > 0 can be used to solve this problem.

2.5 Combustion of Propane — Reduced Formulation

This chemical equilibrium problem, like the preceding one, describes the combustion of
propane in air. This formulation, however, uses the element variables of Meintjes and
Morgan [17] to avoid the square roots in the function evaluations. The formulation of the

problem in terms of element variables also reduces the problem to a system of the form

fi(z) = 129 + 21 — 325

f2(2) = 22129 + v1 + 2R1023 + 2223 + Rrwaws + Rowawy + Rgwa — Ras

f3(x) = 2w92% + Rragws + 2R52% + Rews — 8us

f1(2) = Roxazy + 222 — 4Rx5

f5(2) = w129 + 21 + Rio%3 4 2223 + Rraza3 + Roxvawg + Rsva + Rsw3 + Rews + 25 — 1

with data Rs,..., Rio which depends on the parameters p and R described previously. In
this problem n = 5, p = 40, and R = 10. (We note that there is a typographical error in
the paper of Meintjes and Morgan [17]; the last term in the equation defining f; should be
—4Rx5 and not +4Rx5.)

This system of equations has four solutions with real components for p = 40 and R = 10.
There is only one solution with all positive components; this is the desired solution to the
physical problem.

This problem is not difficult to solve, but unless bounds are imposed, the physical
solution may not be found. An unconstrained algorithm usually finds the physical solution
from the standard starting point x; but tends to converges to non-physical solutions from
the starting points 10z, and 100z,. The bounds z; > 0 can be used to obtain the physical

solution.



3 Least Squares Problems

Solutions to a nonlinear least squares problem subject to equality and inequality constraints

are local minimizers of the problem

min{[|f(2)|)5: a1 < e(x) < e},

where f : R® — R™ defines the residuals of the least squares problem, ¢ : ®* — RP is
the constraint function, and ¢; and ¢, are bounds. Equality constraints are obtained when
components of ¢; and ¢, have the same value. Problems in this section include bound-

constrained problems where ¢(2) = 2, and equality constrained problems where ¢; = ¢,,.

3.1 Isomerization of a-pinene — Direct Formulation

This problem requires the determination of the reaction coefficients in the thermal isomer-

ization of a-pinene. The linear kinetic model proposed for this problem is of the form

v = —(01+6)m;
yo = b
ys = b2y — (634 02)ys + O5y5 (3.1)
3/4/1 = bsys
ys = O4y3 — 0535
where 64, . .., 05 are the unknown coefficients. Initial conditions for the differential equation

are known. In this problem the relative concentrations of a-pinene and three by-products
are measured at eight time points, while the relative concentration of a fourth by-product is
derived from the other concentrations. Thus, at a set of eight time points 7, ..., 7g, vectors
of concentration measurements z; are given for y at 7;, where y is the solution to the system

of differential equations which governs the reaction. The a-pinene problem is to minimize
8
) 2
> lly(75:0) — 21, (32)
i=1

where 6 is the vector with components 64,...,65 of unknown reaction coefficients. This
formulation of the a-pinene problem is based on the work of Box, Hunter, MacGregor, and
Erjavac [3].

The a-pinene problem is a typical example of inverse problems involving differential
equations that arise in chemical kinetics. In the general case the reaction is governed by a

system of p differential equations

y/(t) = F(t,y(t),@), a<t<b,

10



which depend on a vector § € ? of unknown parameters. Initial conditions for y € R?
may also be provided, and may also depend on #. In the a-pinene problem p = ¢ and F'is
bilinear in # and y, but these conditions do not hold in general.

We formulate the a-pinene problem as an unconstrained nonlinear least squares problem
involving a numerical approximation u(t;8) to y(t;6) obtained from a fourth-order Runge-
Kutta scheme over ng time intervals. The optimization problem is then to determine a

parameter vector § € $° that solves the problem
8
min Z\]u(rj;O)—Zj\IQ: 6;>0,i=1,...,55. (3.3)
i=1

This is a nonlinear least squares problem with m = 40 equations and n = 5 variables. The
constraints #; > 0 arise from physical considerations. For sufficiently large ng, we expect
that solutions to problem (3.3) will be close to a solution of problem (3.2).

An approximation to the Jacobian matrix for this formulation of the a-pinene problem
can be obtained by solving a system of coupled ordinary differential equations consisting of
the original a-pinene equations and 25 additional equations. The additional equations are
obtained by differentiating each of the a-pinene equations (3.1) by #; for j = 1,...,5, and
noting that if

w; j(7;6) = O, yi(T3 0),
then
w; ;(1:0) = 0o, yi(7:0).

The approximation to the Jacobian matrix obtained by this method is more accurate than
an approximation based on differences of function values.

In our numerical results we used a Runge-Kutta method with ng = 80 time intervals.
The solution of this version of the a-pinene problem is not difficult to obtain from the
standard start €5, but becomes increasingly difficult to solve from remote starting points.
The approximation u(t,-) for the optimal 6, shown in Figure 3.1, is an excellent fit to the
data.

Numerical difficulties in solving this version of the a-pinene problem are mainly due to
the result that with fixed-steplength Runge-Kutta techniques and sufficiently large values
of 6, the approximation u(t;6) becomes unbounded as t increases. In contrast, the true
solution y(t;8) of the differential equations problem remains bounded for ¢ > 0 for any
nonnegative choice of #y,...,0s5. Hence, our test problem becomes difficult to solve given
poor initial estimates for #. We illustrate this remark by noting that while the initial residual
norm computed at the standard starting point was 7.03, the residual computed at 50 times
this starting point was 7.22 x 109, Hence, this problem is quite challenging with respect

to choice of initial estimates.

11
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Figure 3.1: The five components of u(t,8) for the a-pinene problem with the optimal 6

In general, extreme sensitivity to initial 8 estimates is a hallmark of problems of this type.
As with the a-pinene example, integration may be done using a fixed-steplength numerical
solver of initial value problems. Decreasing the steplength does not affect the size of the
optimization problem and may enlarge the set of possible 8 for which the solver is stable, but
of course adds to the computational expense of residual and Jacobian evaluations. A more
interesting approach is to use an adaptive solver, which automatically adjusts steplengths
to correspond to the level of accuracy requested by the user, and can be expected to be
more stable than fixed steplength solvers. The resultant approximation u(¢;#) may not be
smooth with respect to small variations in 6 (Lyness [15] provides an interesting discussion
of this point), but this approach allows the possibility of using optimization software that
makes use of variable-accuracy evaluations to avoid the expense of full accuracy solutions
whenever possible. This challenging category of test problems has been neglected in the

literature.

3.2 Isomerization of a-pinene — Collocation Formulation

The second a-pinene problem requires the determination of the reaction coefficients in
the thermal isomerization of a-pinene; in this problem, however, collocation is used to
approximate the solution of the differential equations that define the kinetics of the problem.
This formulation of the a-pinene problem is based on the work of Tjoa and Biegler [25].
The collocation method for initial value problems is a special case of the collocation

method for boundary value problems that was used in Sections 2.1 and 2.2. Recall that the

12



k-stage collocation method is defined in terms of a partition
a=1 <ty < - <ty <tpy41 =20

of [a,b], and a set of k collocation points in each interval [¢;,%;11]. The collocation method
approximates the solution of the system of differential equations by a vector-valued function
uy @ la,b] — WP, where each component of u, is a polynomial of order k + 1 in each
subinterval [¢;,%;41]. Thus u, is defined in terms of ngp(k+1) parameters. In the collocation
formulation these parameters are determined by requiring that u, € C[a,b] and that u,
satisfy the differential equation at the collocation points. In the usual case we are given
p initial values; these initial values together with the continuity and collocation equations
lead to a system of nop(k + 1) equations in the ngp(k + 1) parameters that define u,.

We now formulate the a-pinene problem as a minimization problem subject to equality
constraints. Let z € R™ be the vector that defines wu., with n = nop(k + 1). We define
ur-(T;2) = ur(7) to make explicit the dependence of u, on x. If we write the initial value,

continuity, and collocation equations as constraints of the form
c(z,0)=0,

where ¢ : R*T? — R", then the optimization problem is

min Z |ur(Tj52) — Zsz te(z,0)=0
=1

The I penalty approach to the solution of this problem leads to a least squares problem of

the form
m n
min $ Y Jux(r;2) — 212 + § Y oici(x,0)° o,

where o; > 0, while the augmented Lagrangian approach leads to a problem of the form

=1 ¢

min { 3" st a) = 5 + 33 [ty + 2] L
=1

where ¢; > 0 and A; € R is an estimate of the Lagrange multiplier for the constraint ¢;.
Both approaches lead to least squares problem with mp + n equations and n + ¢ variables.
Recall that n = ngp(k+1) and that ng is the number of subintervals, k+1 is the order of the
polynomials that define u, in each subinterval, p is the number of differential equations in
the model, ¢ is the number of components in the parameter vector 8, and m is the number of
data points. Note that ng and k can be specified, while the other parameters are dependent
on the problem. Arbitrarily large-dimensional test problems can be generated by selecting

larger values of ng.

13
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Figure 3.2: Spurious solution u(t; ) to the a-pinene problem

For the a-pinene problem, p = ¢ = 5, and m = 8. We selected & = 4 and ng = 10, so our
least squares problem has 290 equations and 255 variables. Convergence from the standard
starting point is not difficult. The final approximation obtained for y was identical to that
shown in Figure 3.1.

The collocation approach demonstrates the value of using simple constraints on the
variables to enforce the known nonnegativity of the components of 8. For sufficiently remote
starting points, unconstrained least squares algorithms applied to this problem may converge
to a different local minimizer with some components of 8 negative, with u as shown in
Figure 3.2. A bound version would not have encountered this spurious local solution.
Simple bound constraints on the variables defining the approximation wu, can also be used
to enforce ur(¢;) > 0 at the node points t; — a desirable feature in chemical engineering
problems where negative concentrations have no physical meaning. Similarly, if physical
considerations dictate that a given component of u, be increasing or decreasing, simple
constraints on the variables can ensure that a given component of w/ (¢;) is of the correct

sign. These capabilities for constraining u are not present in the direct approach.

3.3 Coating Thickness Standardization

The coating thickness problem arises from the need to nondestructively determine any
nonuniformity in the lead-tin coating on samples of standard reference materials. This is
a multiple-response data-fitting problem communicated by Janet Rogers of the National

Institute of Standards and Technology.

14
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Figure 3.3: Coating thickness standards model 21 (&1, &;) for optimal x4, ..., 24

At each of ng isolated points on the surface, we have measurements y; for the coating
thickness, the relative abundance y;4,, of lead to tin, and the surface coordinates (&1,&2);
at which the measurements were made. All four of these values are subject to error. We
model the thickness of the coating and the relative abundance of tin to lead using simple

bilinear tensor-product functions

21(61,82) = @1+ & + 238 + 246,
22(&1,82) = @5+ weby + 2762 + 286160
We seek values of the parameters z,..., s, and small perturbations zg, ..., 2g42,, to the

measured coordinates (£1,&;); which fit the data in a least squares sense. This formulation

leads to a least squares problem with residuals of the form

fz($) = 21(51,2' + 2844, 52,2' + 968-|-z’-|—no) — Y 1< < g,
fitno(2) = 22(&1i + %8445 E20 + T84itno ) — Yitnos 1 <4< ng,
and
fitane (2) = w; T84, 1 <4 < 2ng,

where y; and & ;, &; are the measured data and w; is a set of weights. These residuals
define a least squares problem with n = 8 4+ 2ng variables and m = 4ng equations. In the
data supplied by Susannah Shiller of the National Institute of Standards and Technology,
ng = 63, so that n = 134 and m = 252.
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Figure 3.4: Exponential data fitting problem I

This problem is not difficult to solve from any of the starting values. Convergence always

takes place to the same minimizer. At the solution z* we have
|f(z*)|| = 0.7109842,

which reveals an excellent fit of the model to the data, since y; is of order 10.

A plot of the model z; as a function of (&, &2), with z1,...,z4 set to the optimal values
for the parameters, appears in Figure 3.3. This plot suggests that the model is almost linear
in the region of interest. However, the relationship is not ezactly linear because a calculation
shows that in this region the first component of the gradient of the model varies over the
interval [16.4, 18.6], while the second component varies over the interval [1.17,1.33].

We have omitted a plot of the model z; with optimal z5,..., x5 because the plot is
similar. Moreover, for this model we also conclude that the relationship between the model

and the independent parameters is almost linear in the region of interest.

3.4 Exponential Data Fitting I

This is an exponential data fitting problem using data supplied by A. M. Sargeson from the
Research School of Chemistry of the Australian National University. The problem is of the

form
filz) =y — (961 + zgexp(—t;z4) + 23 exp(—tixg,)),

with ¢; = 10(7 — 1) and data y;. In this problem m = 33 and n = 5. The formulation of this
problem is due to Osborne [23].
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This problem is not difficult to solve from the standard starting point z; and from
the starting point 10z, but underflows occur from the starting point 100zs. The bounds
—10 <z; <10 for 1 < j <5 can be used to solve this problem. At the solution z* we have

| f(z™)|| = 0.7392493 x 1072,

A plot of the data and the model with the optimal parameters appears in Figure 3.4.

3.5 Exponential Data Fitting 11

This is an exponential data fitting problem using data supplied by W. J. Caelli from the
Research School of Physical Sciences of the Australian National University. The problem
is of the form
Jilz) = yi — (961 exp(—tis) + xg exp(—(t; — z9) x¢)
+ zzexp(—(t; — x10)%a7) + vaexp(—(t; — 9611)2968))7

with ¢; = (¢ — 1)/10 and data y;. In this problem m = 65 and n = 9. The formulation of
this problem is due to Osborne [23].

This problem is not difficult to solve from the standard starting point z,, but underflows
occur from other starting points. The bounds 0 < z; < 10 for 1 < j < 10 can be used to

solve this problem. At the solution z* we have
1/(2™)[| = 0.2003440.

A plot of the data and the model with the optimal parameters appears in Figure 3.5.
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Figure 3.6: The thermistor resistance problem

3.6 Thermistor Resistance

The thermister resistance problem arises in the analysis of the resistance of a thermistor
as a function of the temperature. The data was supplied by J. H. Hadley of the Shell
Development Company. The problem is of the form

fi(z) = 21 exp (ﬁ) _—

with data y; at the time points ¢; = 54 45¢ for « = 1,...,m. In this problem m = 16 and
n = 3. The formulation of this problem is due to Meyer [18].
This problem is difficult to solve even from the standard starting point z,. At the

solution z* we have

| f(2%)]] = 9.377945 .

An algorithm can fail from other starting points because the dependence of this problem on
t; is lost for large values of z3. In particular, if x5 is sufficiently large, this problem reduces

to a one-variable problem in the variable

T2
z=x1exp|— .
T3

This situation can be avoided by imposing the bound 23 < 10%. This bound is fairly tight
since at the solution, x5 = 345.22.

A plot of the data and the model with the optimal parameters appears in Figure 3.6.
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Figure 3.7: The enzyme problem

3.7 Analysis of an Enzyme Reaction

This problem arises in the analysis of the kinetic data for an enzyme reaction. The problem

is of the form (¢ )
T U; U; T
) = e e
with data g; and u;. In this problem m = 11 and n = 4. This problem was formulated by
Kowalik and Morrison [13].
This problem can be solved from the standard starting point z; without difficulty. At
the solution z* we have

| f(z™)|| = 0.1753584 x 10~*.

From the starting point 10z, algorithms may be attracted to a local minimizer at infinity

with 9 = —14.075. For this minimizer
| f(z™)]| = 0.3205219 x 10~*.

There are no bounds in this problem, but imposing the bounds x5 > 0 and z4 > 0 guarantees
that the function is well defined, since u; > 0 for all . The local minimizer at infinity can
be avoided by imposing the bounds z; < 100 for 1 < j < 4.

A plot of the data and the model with the optimal parameters appears in Figure 3.7.
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3.8 Chebyshev Quadrature

The Chebyshev problem arises from the determination of the nodes of a quadrature formula

with equal weights. The problem is of the form
1
file) = -3 1wy = [ 1) de.

where T; is the i-th Chebyshev polynomial shifted to the interval [0, 1]. In this problem any
m > n is allowed, but in the discussion below it is assumed that m = n. This problem was
formulated by Fletcher [8].

The Chebyshev problem has a zero residual solution for 1 < n < 7 and for n = 9.
Note that the solution is not unique because any permutation of the variables also yields a
solution. Thus, there are n! distinct zero residual solutions. Such a zero residual solution can
be obtained without difficulty from the standard starting point, but the problem becomes
difficult to solve from the starting point 10z, unless bounds are imposed. Since the nodes
are required to be in the interval [0, 1], the bounds 0 < z; <1 for 1 < j < n are natural.

There seems to be a unique minimum of the least squares problem for n = 8 and n = 11.
They are given by

| f(z*)]] = 0.5930324 x 1071, n =8,

|f(2%)] = 0.5291277 x 10~',  n=11.

We have found two local minima for n = 10. They are given by
| f(z™)]| = 0.6908483 x 10™', || f(z™)|| = 0.8064710 x 10"

If an algorithm is started from the standard starting point, it will usually converge to the

second minimum given above. There are multiple local minima for n > 11.
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4 Minimization Problems

The problem of minimizing a function f : " — R subject to equality and inequality

constraints can be expressed in the form
min{f(z): ¢ < c(z) < eyl

where ¢ : R” — RP is the constraint function, and ¢; and ¢, are bounds. Equality constraints
are obtained when components of ¢; and ¢, have the same value. Many of the problems in

this section are bound-constrained problems; in this case ¢(z) = x.

4.1 Elastic-Plastic Torsion

The elastic plastic torsion problem arises from the determination of the stress field on an
infinitely long cylindrical bar. The infinite-dimensional version of this problem is of the
form

min{q(v):v € K},

where ¢ : K — % is the quadratic

g(v) = %/p IVo(2)||? de — C/D o(2) da

for some constant ¢, and D is a bounded domain with smooth boundary. The convex set
K is defined by
K ={ve Hy(D):|v(z)| < dist(z,dD), x € D},

where dist(-,dD) is the distance function to the boundary of D, and H{(D) is the Hilbert
space of all functions with compact support in D such that v and ||Vv||? belong to L*(D).
This formulation and the physical interpretation of the torsion problem are discussed, for
example, in Glowinski [10, pp. 41-55].

A finite element approximation to the torsion problem is obtained by triangulating D
and replacing the minimization of ¢ over H}(D) by the minimization of ¢ over the set of
piecewise linear functions that satisfy the constraints specified by K. The finite element
approximation thus gives rise to a finite-dimensional minimization problem whose variables
are the values of the piecewise linear function at the vertices of the triangulation.

We develop a finite element approximation to a minimization problem with a quadratic

q of the general form
q(v) = %/D wq(x)HVv(x)szx — /D wi(z)v(x)de, (4.1)

where wy : D — R and w; : D — R are functions defined on the rectangle D. In the torsion

problem w, =1 and w; = c.
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Let D = (€14, &1.0) X (€21, €2,,) be a rectangle in R2. Vertices z; ; € %2 for a triangulation
of D are obtained by choosing grid spacings h, and h, and defining grid points

zii = (&4 thy, &2+ Jhy), 0<i<n,+1, 0<j5<n,+1,

such that 2, 411,,41 = (&1,4,&,u). The triangulation consists of triangular elements 77,
with vertices at 2; ;, z;41,5, and 2; ;41 and triangular elements Ty with vertices at z; ;, 2,1 ;,
and z; ;1.

A finite element approximation to the torsion problem is obtained by minimizing ¢ over
the space of piecewise linear functions v with values v; ; at z; ;. The approximation to the

integral

[y wal IVl da

over the element 17, is the quadratic qu, where

2 2
L . Pit1,j — Vi,j Vig+1 — Vi
qi7j(v) = Hij { ( hls ) + ( hy ) } ”

hph
Hij = L {wy(2i5) + we(zig1,7) + welzij1)} -

Similarly, the approximation over the element 7}; is the quadratic nga where

2 2
U L Vi—1,7 — Vij Vij—1 — Vij
0= N { (Bt () } ,

hyih
6 L {wy(2i,5) + welzio1;) + wol(zij-1)} -

These calculations show that the finite element approximation to the quadratic (4.1) leads

Aij =

to a quadratic programming problem of the form
min{¢(v) : v € Q}, (4.2)
where ¢ is the quadratic
d(0) = 5 0 (550 + a(0)) = hahy Yz (4.3)

Note that in this formulation the quadratic qu is defined only when 0 < ¢ < n, and
0 <j < ny, while qgj is defined when 1 <7 <mn, 4+ 1and 1< j <ny,+ 1. Also note that

for the torsion problem w, = 1 and w; = ¢ and that the feasible set ) is
Q= {?J € Ry |Ui,j| < di,j}v
where d; ; is the value of dist(-,0D) at z; ;.
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Figure 4.1: Torsion problem with ¢ =5

A plot of the solution to the finite-dimensional approximation to the torsion problem
with D = (0,1) x (0,1) and ¢ = 5 appears in Figure 4.1. In general, the problem becomes
easier to solve as ¢ increases because then the linear term in ¢ dominates. Numerical results
for the elastic-plastic torsion problem are presented, for example, by O’Leary and Yang [22],
Elliott and Ockendon [7, pp. 124-125], and Moré and Toraldo [19].

4.2 Pressure Distribution in a Journal Bearing

The journal bearing problem arises in the determination of the pressure distribution in a
thin film of lubricant between two circular cylinders. The infinite-dimensional version of
this problem is of the form

min{q(v):v € K},

where ¢ : K — R is the quadratic (4.1) with

wq(£17£2) = (1 + €cos 51)37 wl(flvf?) = esin§y

for some constant ¢ in (0, 1), and D = (0,27) x (0,2b) for some constant b > 0. The convex
set K is defined by
K ={ve Hy(D):v>0on D}

In the formulation of Cimatti [4], all functions in K were required to be periodic in the first
argument with period 27; in our formulation we have neglected the periodicity conditions.
A finite element approximation to the journal bearing problem is obtained as in the

torsion problem. The result is a quadratic programming problem of the form (4.2), where ¢
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Figure 4.2: Journal bearing problem with b = 10 and ¢ = 0.1
is the quadratic defined by (4.3). For the journal bearing problem wy (&1, &) = (1+e€coséy)?
and w;(&1,&) = esin &y, and the feasible set  is
Q={veR"™" v, >0}

A plot of the solution to the finite-dimensional approximation to the journal bearing
problem with b = 10 and ¢ = 0.1 appears in Figure 4.2. This problem is harder to solve
than the elastic-plastic torsion problem unless the problem is scaled so that the diagonal
elements in the matrix that represents ¢ are unity. Numerical results for the journal bearing
problem are presented, for example, by Lin and Cryer [14], Cimatti and Menchi [5], and
Moré and Toraldo [19].

4.3 Minimal Surfaces

The determination of the surface with minimal area and given boundary values in a convex

domain D is an infinite-dimensional optimization problem of the form
min{f(v):v € K},
where f: K — % is the functional
B N\ 1/2
sy = [ (L Ive@)?) " da.
and the set K is defined by

K = {v € HY(D): v(z) = vp(z) for x € 87)}

24



L NN

22
LT F AT

RN

:\\ ““““‘“ 0
R Y
R,
NUtRepaesss!
Ry
A

Figure 4.3: Enneper’s minimal surface

for some boundary data function vp : 3D — R. The boundary function vp uniquely defines
the solution to the minimal surface problem.
An interesting minimal surface discovered by A. Enneper is obtained by defining vp on

D= (_%7%) X (_%7%) by

vD(flvf?) = u2 - v27

where v and » are the unique solutions to the equations

1 1
& = u4 uwo? — gu?’, £ = —v —u?v+ =0

3

For more information on this minimal surface, see Nitsche [21, pp. 80-85]. A plot of this
minimal surface appears in Figure 4.3.

A finite element approximation to the minimal surface problem is obtained by minimiz-
ing f over the space of piecewise linear functions v with values v; ; at z; ;, where z; ; € ®?
are the vertices of a triangulation of D with grid spacings h, and h,. The values v;; are

obtained by solving the minimization problem

min{z ( fj(v) + g](v)) tv € R,

where the functions Z{J]« and z’l,]j are defined by

h h v — v 2 v — v 2 1/2
L zlby i+1,5 @] i, +1 (¥
27](?]) 2 ( hac ) ( hy )
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Note that in this formulation f»Lz is defined only when 0 <7 < n, and 0 < j < n,, while

Figure 4.4: Norm ||Vv|| for the stress field v in a design with composite materials

is defined when 1 <¢<n,+1land 1 <5 <ny,+1.

4.4 Optimal Design with Composite Materials

This optimal design problem requires determining the placement of two elastic materials
in the cross-section of a rod with maximal torsional rigidity. Our formulation follows the
approach of Goodman, Kohn, and Reyna [11]

Let D in %% be a bounded domain, and let w < |D|, where |D| denotes the area of D
The solution of the optimal design problem is a subset € of D that solves the problem

where

min{F(v,Q):v e H)(D), |Q| = w}

and

0.2) = [ {3u@lTo(@)* + oe)} da
plz) =

M1, erv

p(a) = pa, v & Q.
The reciprocals of the constants 1 and po are the shear moduli of the elastic materials in
the rod. We assume that py < o
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Figure 4.5: Contours of ||Vv|| for the stress field v in a design with composite materials

Goodman, Kohn, and Reyna [11] formulate the optimal design problem in terms of a

family of problems of the form
min{ fr(v) : v € Hy(D)},
where f) : Hj(D) — R is the functional
A= [ {19+ v(e)} de

and ¥y : ® — R is a piecewise quadratic. In this formulation A is a Lagrange multiplier

associated with the optimal design problem, and the piecewise quadratic ¥ : ¥ — R is of

the form
That?, 0<t <y,
VA(t) = pati(t — 3t1), t1 <t <ty
%Hl(tz —3) 4 paty(ty — %tl)v ty <1,

with the breakpoints t; and 5 defined by

1 1
t = (2/\“—1) o= (2/\“—2) 2
H2 41

The definition of the breakpoints implies that pyts = poty, and thus 4 is continuously
differentiable. The solution of the optimum design requires determining a A that maximizes
the mapping ¢ : ® — R defined by
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Figure 4.6: Region of homogenization in a design with composite materials ( n = 10% )

where ¢(\) is the minimum value of fy. Goodman, Kohn, and Reyna [11] describe how the
solution of the maximization problem defined by ® can be used to generate a minimizing
sequence for the optimal design problem.

In the sequel we consider only the problem of minimizing f\ for a fixed value of A. A
finite element approximation to this problem is obtained by minimizing fy over the space
of piecewise linear functions v with values v; ; at 2; ;, where z; ; € 2 are the vertices of a
triangulation of D with grid spacings h, and h,. The values v;; are obtained by solving

the minimization problem

min{}" (F5(0) + fl(0) 4 viy) v € R,
where the functions fj and z’l,]j are defined by

L(v) = hgﬂw (@5,(0), ) = hghy oy (d7(0)

) 9y 1/2
=+ o Vit1,; — Viy Vij41 — Uiy
dii(v) = {(7/@7; ) + (7]@ ) }

Note that in this formulation fj is defined only when 0 <37 < n, and 0 < 5 < n,, while

gjisdeﬁnedwhen1§i§nx—|—1and1§j§ny—|—1.

with

In our numerical results we used pu; = 1 and uy = 2, so that t = X\. A plot of the norm
IVv|| of the gradient of the stress field v with D = (0,1) x (0,1) and # = 0.008 appears
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Figure 4.7: Region of homogenization in a design with composite materials ( n = 4 x 10* )

in Figure 4.4. Figure 4.5 is the contour plot for this surface. In both figures we have used
ny = ny = 100 so that n = 10%.

Figures 4.4 and 4.5 show that [|Vv]|| is changing slowly in the center of D, where
IVo(z)|| < t;. On the other hand, the gradient changes quite rapidly in the region where
t1 < ||[Vo(2)]| < t;. We are not even guaranteed a continuous gradient Vo in this region.
Thus, approximation by piecewise linear elements seems to be fully justified in this problem.

The rod has the material with greater shear modulus 1/u4 where the shear [|[Vo(a)|| > t2,
and the weaker material where ||Vo(2)|| < t;. Figure 4.4 shows that in the optimal design,
the weaker material is placed in the center and corners of the rod.

The region where t; < [|[Vo(z)]| < tp is the homogenized region. The geometry and
placement of the region of homogenization are of interest in the optimal design. It is
known, for example, that in general the boundary of this region is not smooth. The plots
of this region in Figures 4.6 and 4.7 indicate the unusual nature of this region.

The contour plot in Figure 4.5 and the plots of the region of homogenization in Figures
4.6 and 4.7 are similar to those obtained by Goodman, Kohn, and Reyna [11]. Note,
however, that in these plots we used 3 = 0.008, while Goodman, Kohn, and Reyna [11] used
2 = 0.002. Another difference is that the homogenized region in these plots is connected,

while this is not the case in the results of Goodman, Kohn, and Reyna [11].
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4.5 Inhomogeneous Superconductors

This problem arises in the solution of the Ginzburg-Landau equations for inhomogeneous
superconductors in the absence of a magnetic field. The one-dimensional system under
consideration consists of alternating layers of lead and tin. Our formulation is based on the
work of Garner and Benedek [9].

The optimization problem is to minimize the Gibbs free energy as a function of the

temperature. The infinite-dimensional version of this problem is of the form
min{f(v) : v(~d) = v(d), v € C'[~d,d]},

where 2d is the width of the material, and f is the Gibbs free energy function. In this

problem
101 = 55 [ {at@e + tol@n + Livor} e

the functions a and 3 are piecewise constant for a fixed value of the temperature, A is
Planck’s constant, and m is the mass of the electron.

The functions « and 3 are constant in the intervals that correspond to the lead and the
tin. Since in this problem the lead in the material corresponds to the interval [—ds, dg] and

tin in the remaining part of the interval [—d, d], the function « is defined by

ay, —d<¢<—dg
o) =1 ag, —ds<&<ds
an, d5<5§d

Similarly, the function g is defined by
ﬁNv —d < 5 < _dS
B() =4 Bs, —ds<&<ds
BN, ds <¢<d

The constants ag and apn are negative, but Sg and Gy are positive.
A finite element approximation to the superconductivity problem is obtained by mini-

mizing f over the space of piecewise linear functions v with values v; at t;, where
—d=Hh <ty<...<tlp<tp41 =d.

We assume that there are indices n; and ny such that ¢,, = —dg and ¢,, = dg, where
1 < ny < ny < n. This guarantees that the ¢; do not straddle a point of discontinuity of

the functions a and 3. The values v; are obtained by solving the minimization problem

min{% S fi(v) o€ R
=1
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Figure 4.8: Superconductivity problem

where

fi(v):hi{%vfﬂ—ﬁ_|_@”z'5+1—”i5_|_ h (”i+1—vi)2}7

3 vy — v 5 vip1 — v 4m h;
with h; = t;41 — t; the length of the i-th interval, and the constants a; and 3; the values of
the functions a and § in the interval [¢;,%;41]. The constraint that v(—d) = v(d) is taken

into account by requiring that v,4+1 = vy.
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